Proof: By Induction
(related to Proposition: Limit of Nth Powers)
Context
Base Case
Hypothesis
- Assume that for some natural number $k$, $\lim_{x\to a}x^k=a^k$ is true.
Induction Step
- According to the proposition of limit of the product, it follows that $$\lim_{x\to a}x^{k+1}=\lim_{x\to a}x^{k}\cdot x=(\lim_{x\to a}x^k)\cdot (\lim_{x\to a}x)=a^k\cdot a=a^{k+1}.$$
- Thus, the statement ist true for $n=k+1.$
Conclusion
- By induction, $$\lim_{x\to a }f(x)=\lim_{x\to a }x^n=a^n$$ is true for all $n\ge 1.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016