◀ ▲ ▶Branches / Analysis / Corollary: Negative Cosine and Sine vs Shifting the Argument
Corollary: Negative Cosine and Sine vs Shifting the Argument
(related to Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function)
For all real numbers $x\in\mathbb R$, we can shift the argument of the real cosine and real sine by the $\pi$ constant to get the negative values of these functions, formally $$\cos(x+\pi)=-\cos(x),\quad\quad\sin(x+\pi)=-\sin(x).$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983