◀ ▲ ▶Branches / Analysis / Proposition: Oddness of the Sine of a Real Variable
Proposition: Oddness of the Sine of a Real Variable
The sine of a real variable is an odd function, i.e.
\[\sin(-x)=-\sin(x),\quad\quad x\in\mathbb R.\]
In particular, its graph is symmetric with respect to the rotation of 180 degrees about the origin.
Table of Contents
Proofs: 1
Mentioned in:
Examples: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983