◀ ▲ ▶Branches / Analysis / Definition: Even and Odd Functions
Definition: Even and Odd Functions
Let \(I\subseteq\mathbb R\) be a subset of real numbers and let \(f:I\mapsto\mathbb R\) be a function \(f\) is called:
- even, if \(f(x)=f(-x)\),
- odd, if \(f(x)=-f(-x)\)
for all \(x\in I\).
Table of Contents
- Proposition: Derivatives of Even and Odd Functions
Mentioned in:
Proofs: 1 2
Propositions: 3 4 5 6
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Reinhardt F., Soeder H.: "dtv-Atlas zur Mathematik", Deutsche Taschenbuch Verlag, 1994, 10th Edition