Proposition: Only the Uniform Convergence Preserves Continuity

Let $D\subset\mathbb R$ and let $f_n:D\to\mathbb R$ be continuous functions on $D$ and let the sequence $(f_n)_{n\to\mathbb N}$ be uniformly convergent to the limit function $f:D\to\mathbb R.$ Then $f$ is also continuous on $D.$

The limit function $f$ does not have to be continuous if the continous functions $f_n$ converge only pointwise to $f.$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983