Proof
(related to Theorem: Reverse Triangle Inequalities)
By hypothesis, $x,y\in\mathbb R$ are arbitrary real numbers.
Proof of $(1)$
Proof of $(2)$
- From $(1)$ it follows $|x-y|=|x+(-y)|\ge |x|-|(-y)|=|x|-|y|.$
- For the same reason $|y-x|\ge |y|-|x|.$
- By definition of absolute value $|x-y|=|y-x|.$
- Thus, both inequalities hold simultaneously: $|x-y|\ge |x|-|y|$ and $|x-y|\ge |y|-|x|.$
- The greater of $|x|-|y|$ and $|y|-|x|$ equals $\left||x|-|y|\right|.$
- Therefore, $$|x-y|\ge \left||x|-|y|\right|.$$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983