Theorem: Reverse Triangle Inequalities

For any real numbers \(x,y\in\mathbb R\), the following reverse triangle inequalities hold:

  1. $|x+y|\ge |x|-|y|,$
  2. $|x+y|\ge |x|-|y|,$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983