Lemma: Unit Circle

Let \(x\in\mathbb R\) be any real number and let \(z\) be the complex number, for which \(x\) is the imaginary part, i.e. \(x=\Im(z)\Longleftrightarrow z:=ix\).

The distance of the complex exponential function from the point of origin is equal \(1\), formally

\[|\exp(ix)|=1\quad\quad\text{for all }x\in\mathbb R.\]

Geometrically, the complex numbers \(\exp(ix)\) form a figure called the unit circle:

Fun questions

Proofs: 1

Definitions: 1 2
Lemmas: 3
Proofs: 4 5 6
Propositions: 7


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983