Corollary: Existence of Arbitrarily Small Powers

(related to Axiom: Archimedean Axiom)

Let \(0 < b < 1\) be a real number. Then, for every (arbitrarily small) \(\epsilon > 0\) there is natural number \(n\), for which \(b^n < \epsilon\).

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983