Corollary: Existence of Arbitrarily Small Powers
(related to Axiom: Archimedean Axiom)
Let \(0 < b < 1\) be a real number. Then, for every (arbitrarily small) \(\epsilon > 0\) there is natural number \(n\), for which \(b^n < \epsilon\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Forster Otto: "Analysis 1, Differential und Integralrechnung einer VerĂ¤nderlichen", Vieweg Studium, 1983