Corollary: Existence of Arbitrarily Small Powers
(related to Axiom: Archimedean Axiom)
Let \(0 < b < 1\) be a real number. Then, for every (arbitrarily small) \(\epsilon > 0\) there is natural number \(n\), for which \(b^n < \epsilon\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983