Proof
(related to Corollary: Existence of Unique Integers Exceeding Real Numbers)
- Assume $x=0$ (real number).
- Assume $x > 0$ is a positive real number.
- Assume $x < 0$ is a negative real number.
- Since $-x > 0,$ we have already shown that there is a unique integer $l$ with $l\le -x < l + 1.$
- Therefore, there is a unique integer $-l$ with $-l-1 < x \le -l.$
- If $x = -l,$ then $-l\le x < -l+1$ with a unique $l.$
- Else if $x < -l,$ then $-l-1\le x < l$ with a unique $l.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001