◀ ▲ ▶Branches / Number-systems-arithmetics / Corollary: Existence of Natural Numbers Exceeding Positive Real Numbers (Archimedian Principle)
Corollary: Existence of Natural Numbers Exceeding Positive Real Numbers (Archimedian Principle)
(related to Axiom: Archimedean Axiom)
For every positive real numbers \(y > 0\) there exists a natural number \(n\) with \(y < n\).
Table of Contents
Proofs: 1
Mentioned in:
Axioms: 1
Explanations: 2
Proofs: 3 4 5 6
Sections: 7
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983