Proof
(related to Proposition: Euler's Criterion For Quadratic Residues)
- By hypothesis, $p > 2$ is a prime number and $n\in\mathbb Z$ is a given integer.
- Case 0: Assume $p\mid n.$
- Then $n(p)\equiv 0(p).$
- Multiplying the congruences, we have $n^{\frac{p-1}{2}}(p)\equiv 0(p).$
- Therefore, the postulated formula for the Legendre symbol modulo $p$ is correct.
- Case 1: Now, assume $p\not\mid n,$ and $\left(\frac np\right)=1.$
- Case 2: Now, assume $p\not\mid n,$ and $\left(\frac np\right)=-1.$
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927