Definition: Generalization of the Greatest Common Divisor

Let $(R,\cdot,+)$ be an integral domain with the multiplicative neutral element $1,$ and let $M\subseteq R$ be its subset. The element $a$ is called the greatest common divisor of $M,$ if and only if:

We express these two conditions being fulfilled simultaneously for $a$ by writing $a=\gcd(M).$

Notes


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976