◀ ▲ ▶Branches / Algebra / Definition: Generalization of the Greatest Common Divisor
Definition: Generalization of the Greatest Common Divisor
Let $(R,\cdot,+)$ be an integral domain with the multiplicative neutral element $1,$ and let $M\subseteq R$ be its subset. The element $a$ is called the greatest common divisor of $M,$ if and only if:
- $a\mid m\quad\forall m\in M$, i.e. $a$ is a divisor of all elements of $M.$
- $a'\mid m\quad\forall m\in M\Rightarrow a'\mid a$, i.e. if any other element $a'$ is dividing all elements of $M,$ then it is also dividing $a.$
We express these two conditions being fulfilled simultaneously for $a$ by writing $a=\gcd(M).$
Notes
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976