◀ ▲ ▶Branches / Algebra / Definition: Generalization of the Least Common Multiple
Definition: Generalization of the Least Common Multiple
Let $(R,\cdot,+)$ be an integral domain with the multiplicative neutral element $1,$ and let $M\subseteq R$ be its finite subset. The element $a$ is called the least common multiple of $M,$ if and only if:
- $m\mid a\quad\forall m\in M$, i.e. all elements $m\in M$ are divisors of $a$, i.e. $a$ is a common multiple of $M$, and
- $m\mid a'\quad\forall m\in M\Rightarrow a\mid a'$, i.e. $a$ divides any other common multiple $a'$ of $M.$
We express these two conditions being fulfilled simultaneously for $a$ by writing $a=\operatorname{lcm}(M).$
Notes
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976