Definition: Generalization of the Least Common Multiple

Let $(R,\cdot,+)$ be an integral domain with the multiplicative neutral element $1,$ and let $M\subseteq R$ be its finite subset. The element $a$ is called the least common multiple of $M,$ if and only if:

We express these two conditions being fulfilled simultaneously for $a$ by writing $a=\operatorname{lcm}(M).$

Notes


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976