Proof

(related to Proposition: Cauchy Condensation Criterion)

By hypothesis, $\sum_{k=0}^\infty x_k$ is an infinite series $\sum_{k=0}^\infty x_k$ with a monotonically decreasing real sequence $(x_k)_{k\in\mathbb N}$ of non-negative members $x_k\ge 0.$

"$\Rightarrow$"

"$\Leftarrow$"


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
  2. Heuser Harro: "Lehrbuch der Analysis, Teil 1", B.G. Teubner Stuttgart, 1994, 11th Edition