Proposition: Direct Comparison Test For Absolutely Convergent Series

A real infinite series \(\sum_{k=0}^\infty x_k\) is absolutely convergent, if the is a convergent series $\sum_{k=0}^\infty y_k$ such that $|x_k|\le y_k$ for all $k\in\mathbb N.$

Proofs: 1

Proofs: 1 2 3 4 5 6


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983