◀ ▲ ▶Branches / Analysis / Proposition: Direct Comparison Test For Absolutely Convergent Series
Proposition: Direct Comparison Test For Absolutely Convergent Series
A real infinite series \(\sum_{k=0}^\infty x_k\) is absolutely convergent, if the is a convergent series $\sum_{k=0}^\infty y_k$ such that $|x_k|\le y_k$ for all $k\in\mathbb N.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4 5 6
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983