applicability: $\mathbb {N, Z, Q, R}$

Definition: Monotonic Sequences

Based on the order relation for real numbers, a real sequences \((a_n)_{n\in\mathbb N}\) can be classified by the way the values \(a_n\) increase (decrease), depending on increasing index \(n\). The sequence \((a_n)_{n\in\mathbb N}\) is called:

If \((a_n)_{n\in\mathbb N}\) is either (strictly) monotonically increasing or decreasing, it is called monotonic.

  1. Proposition: Real Sequences Contain Monotonic Subsequences

Applications: 1
Definitions: 2
Lemmas: 3 4 5
Parts: 6
Proofs: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Propositions: 24 25 26 27 28
Theorems: 29


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983