◀ ▲ ▶Branches / Analysis / Proposition: Convergent Complex Sequences Vs. Convergent Real Sequences
Proposition: Convergent Complex Sequences Vs. Convergent Real Sequences
Let \((c_n)_{n\in\mathbb N}\) be a complex sequence \((c_n)_{n\in\mathbb N}\) is a convergent complex sequence, if and only if the real sequences of the real parts \((\Re(c_n))_{n\in\mathbb N}\) and imaginary parts \((\Im(c_n))_{n\in\mathbb N}\) are convergent real sequences. In case of convergence, the following equation is fulfilled:
\[\lim_{n\to\infty}c_n=\lim_{n\to\infty}\Re(c_n) + i\cdot \lim_{n\to\infty}\Im(c_n).\]
Table of Contents
Proofs: 1 Corollaries: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983