(related to Proposition: Convergent Complex Sequences Vs. Convergent Real Sequences)
If \((c_n)_{n\in\mathbb N}\) is a convergent complex sequence with \[\lim_{n\to\infty}c_n=c,\] then the sequence of complex conjugates \((\overline{c_n})_{n\in\mathbb N}\) is also convergent with \[\lim_{n\to\infty}\overline{c_n}=\overline{c}.\]
Proofs: 1