Corollary: Convergence of Complex Conjugate Sequence

(related to Proposition: Convergent Complex Sequences Vs. Convergent Real Sequences)

If \((c_n)_{n\in\mathbb N}\) is a convergent complex sequence with \[\lim_{n\to\infty}c_n=c,\] then the sequence of complex conjugates \((\overline{c_n})_{n\in\mathbb N}\) is also convergent with \[\lim_{n\to\infty}\overline{c_n}=\overline{c}.\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983