◀ ▲ ▶Branches / Analysis / Lemma: Convergence Test for Telescoping Series
Lemma: Convergence Test for Telescoping Series
Let $(b_k)_{k\in\mathbb N}$ be a convergent sequence. Then the telescoping series $\sum_{k=0}^\infty (b_k-b_{k+1})$ is a convergent series. In the case $(b_k)_{k\in\mathbb N}$ is monotonic, the series is absolutely convergent.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Heuser Harro: "Lehrbuch der Analysis, Teil 1", B.G. Teubner Stuttgart, 1994, 11th Edition