Proof
(related to Proposition: Limit Test for Roots or Ratios)
- By hypothesis, the sequence of n-th roots $(\sqrt[n]{|a_n|})_{n\in\mathbb N},$ or the sequence of ratios $\left(\frac{|a_{n+1}|}{|a_n|}\right)_{n\in\mathbb N}$ is convergent to a limit $\alpha > 0.$
- Case a) $\lim_{n\to\infty} \sqrt[n]{|a_n|}=\alpha < 1.$
- Case b) $\lim_{n\to\infty} \sqrt[n]{|a_n|}=\alpha > 1.$
- As for the case a) $\alpha < 1$, the root test reveals that $\sum_{n=0}^\infty a_n$ is divergent, if $\alpha > 1.$
- Cases c) $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}=\alpha < 1$ and d) $\alpha > 1.$
- The reasoning is identical as in the cases a) and b), but we have to apply the ratio test.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Heuser Harro: "Lehrbuch der Analysis, Teil 1", B.G. Teubner Stuttgart, 1994, 11th Edition