Corollary: Cosine and Sine are Periodic Functions

(related to Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function)

For all real numbers $x\in\mathbb R$, real cosine and real sine are periodic with the period $2\pi$, i.e. $\cos(x+2\pi)=\cos(x),\sin(x+2\pi)=\sin(x),$ (where $\pi$ denotes the $\pi$ constant).

Proofs: 1

Examples: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983