◀ ▲ ▶Branches / Analysis / Corollary: Cosine and Sine are Periodic Functions
Corollary: Cosine and Sine are Periodic Functions
(related to Proposition: Special Values for Real Sine, Real Cosine and Complex Exponential Function)
For all real numbers $x\in\mathbb R$, real cosine and real sine are periodic with the period $2\pi$, i.e. $\cos(x+2\pi)=\cos(x),\sin(x+2\pi)=\sin(x),$ (where $\pi$ denotes the $\pi$ constant).
Table of Contents
Proofs: 1
Mentioned in:
Examples: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983