For arbitrary real numbers \(x,y,z\in\mathbb R\) with the binary operations addition "\( + \)" and multiplication "\(\cdot\)", the following distributivity laws hold:
\[\begin{array}{ccl} x\cdot(y+z)&=&(x\cdot y)+(x\cdot z),\quad\quad\text{"left-distributivity property"}\\ (y+z)\cdot x&=&(y\cdot x)+(z\cdot x).\quad\quad\text{"right-distributivity property"} \end{array}\]
Proofs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Propositions: 15 16 17 18 19
Sections: 20 21