Proposition: Distributivity Law For Real Numbers

For arbitrary real numbers \(x,y,z\in\mathbb R\) with the binary operations addition "\( + \)" and multiplication "\(\cdot\)", the following distributivity laws hold:

\[\begin{array}{ccl} x\cdot(y+z)&=&(x\cdot y)+(x\cdot z),\quad\quad\text{"left-distributivity property"}\\ (y+z)\cdot x&=&(y\cdot x)+(z\cdot x).\quad\quad\text{"right-distributivity property"} \end{array}\]

Proofs: 1 Corollaries: 1

Proofs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Propositions: 15 16 17 18 19
Sections: 20 21


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
  2. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013