Proposition: Rational Powers of Positive Numbers

Let \(a > 0\) be a positive real number. The exponential function of general base \(a\) with the rational exponent \(\frac pq\in\mathbb Q\), (\(q\neq 0\)), is well-defined and justifies the definition of the rational power function of positive real numbers \(a\to a^{\frac pq}\):

\[a^{\frac pq}=\sqrt[q]{a^p}:=\exp_a\left(\frac pq \right).\]

Notes

The following interactive figure demonstrates the rational power of different real bases \(a \in\mathbb R\) for different rational exponents \(\frac pq\in\mathbb Q\).

Proofs: 1 Corollaries: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983